
Real-time Activity Recognition with Google Glass

Shraman Ray Chaudhuri
shraman@mit.edu

Abstract

The increased popularity of “life-logging” comes with
new demand for accurate activity classification techniques
across mutiple media. In this paper, we present the methods
and results of an enhanced activity classification method us-
ing Convolutional Neural Networks (CNNs) on 30fps video
input from Google Glass. We focused on two categories
of activities: reading and exercising. Classifying video in-
put with CNNs remains an open problem with many chal-
lenges, particularly maintaining high throughput without
diminishing classification accuracy. We present a hybrid
model composed of fast preprocessing techniques and infer-
ence with a fine-tuned AlexNet that achieves high precision
despite these challenges. We also outline various failure
modes when fine-tuning AlexNet on noisy videos with sparse
labels, and provide a training scheme to circumvent these
issues. Our methods achieve an overall classification ac-
curacy of 68% (with many sequences achieving up to 99%
accuracy) with real-time computability on large amounts of
video footage.

1. Introduction

Life-logging is a process whereby individuals document
personal history through an ensemble of video clips, im-
ages, music, and other media describing physical activities,
facilitated by state-of-the-art wearable technologies such as
Google Glass, Kudu VideoGlass, and Memoto. The trend in
life-logging follows an increased popularity of activity shar-
ing in social media—the automation of which is key to user
satisfaction. At the other end of the spectrum, life-logging
technologies are being leveraged as an aid for memory pros-
thesis by means of auto-segmentation [1]. Thus, the breadth
and depth of high-performant classification methods for ac-
tivity tracking based on video input is ever-increasing.

Convolutional Neural Networks (hereon referred to as
CNNs) have proven quite effective for classification and
comprehension of image content, attaining remarkable re-
sults on the problem of object recognition [2]. The success
of CNNs on image classification, however, is not so easily
adaptable to the video domain due to the increase in data

volume, decrease in resolution, and non-trivial exploita-
tion of time-domain correlation between image frames.
Nonetheless, we were encouraged to explore the perfor-
mance of these CNNs on video activity.

We decided to use Google Glass as our primary method
of data collection, and this came with several challenges.
The default frame rate of even lightweight technologies
such as Google Glass hovers around 30fps, with high de-
grees of correlation between individual frames. This means
that in a mere 15 minutes of video, we have 27,000 frames
of raw data with little variation in the amount of informa-
tion we can extract. Furthermore, the challenge was com-
pounded by the fact that the deep CNN architecture used in
our model takes considerably long periods of time to opti-
mize the parameters. Our original multi-GPU environment
in which we sought to train our model was taken offline, and
we had to opt for commodity hardware with significantly
lower compute capability.

After a brief survey of tasks most relevant in everyday
lives of college students here at MIT, we found that reading
and exercising were the two most commonplace yet chal-
lenging activities to classify. We chose to focus only on
these two activities to mitigate the problem of not having
any training data prior to our experiment, and the time con-
straint involved in this project. Training data was collected
by our team members themselves, taking turns to record
daily activities whenever time permitted. “Reading” was
limited to text on laptops, phones, tablets, and books, and
“exercising” was limited to working out on athletics equip-
ment particular to gyms and fitness centers. These defini-
tions and clear-cut boundaries were necessary in removing
the semantic overlap between broad categories of activities
(i.e. walking through a hallway could be constituted by
“reading” signs and “exercising” legs).

Finally, to transform the problem of video classification
into one of image classification required careful preprocess-
ing so as to maintain the fidelity of the reduced data set to
the original videos, as well as remove the correlation be-
tween samples (frames). Because we opted for CNNs rather
than hard-to-train RNN models, we were able to experiment
with several machine learning techniques, such as SVMs
and CRFs, to preprocess our data before training the net.

1



Figure 1. Overview of experiment design.

2. Related Works
There has been extensive research in applying scene and

object recognition techniques to classify still-images [7,8],
and much of this knowledge can be applied to video classifi-
cation after reducing the problem space. A setback with this
approach, however, is the lack of an open database of video
data like the popular ImageNet database. Many strides have
been made to specifically architect neural nets to adapt to
the shortcomings of less diversified datasets. These neural
nets employ advanced and effective techniques to extract as
much information from these correlated frames as possible.
For example, we have RNNs (Recursive Neural Nets) and
LSTM (Long Short Term Memory) architectures [9] which
are able to use classification results from prior runs in anal-
ysis of future runs (i.e. “memory”). Other techniques have
stuck to CNNs but have augmented them with a variety of
substructures analogous to video processing in the human
brain, e.g. multiresolution foveated imaging across multi-
ple frames of reference [10].

However, we take a different (arguably less advanced)
approach than the ones mentioned above, to investigate
whether a pre-existing CNN architecture can perform well
in classifying videos with representative image frames, by
front-loading the work on the preprocessing step to extract
these key frames. We have yet to come across a study that
takes our particular approach in video classification, in con-
text of simple, high-throughput activity tracking.

3. Approach
An overview of the design of our experiment is shown in

Fig. 1. Here I will expand on each section separately, and
the specific methods used in each step.

3.1. Data Collection

Each member was initially responsible for collecting 1-
2 hours of video consisting of reading from laptops and/or
books, exercising at dormitory gyms or Z-Center, and a va-
riety of other activities to be classified under “neither.” We
increased the diversity in our dataset by varying the loca-

tions where the videos were taken, covering as much of the
campus as possible. We all lived in different parts of cam-
pus (some of us, off-campus) and our day-to-day activities
were quite orthogonal in both location and content (every-
thing from biking down Mass Ave. to roaming the halls of
Building 46).

3.2. Image Preprocessing

Frames were extracted from the video via a simple MAT-
LAB script, which then automatically resized the images to
256x256, reduced to grayscale, and marshalled the frames
into different categories based on the activities they rep-
resented. Each member labeled his/her own portion of
the data set and removed clips that would be troublesome
to classify (e.g. when hair fell in front of the camera or
dimmed lighting created too low contrast to adequately dis-
tinguish objects). We (randomly) designated 60% of the
data for training (approx. 200,000 frames), 30% for valida-
tion (approx. 100,000 frames), and 10% for testing (approx.
31,000 frames). Fig. 2 shows a few of the raw frames com-
prising our data set, and Fig. 3 shows the labels assigned to
a sample video sequence.

After manual filtering of the frames, much of the raw
image data was still highly correlated and running the raw
frames through the CNN would not only lead to wasting
valuable compute time, but also run the risk of unevenly
fitting the data to a non-uniform distribution of unique sam-
ples (e.g. walking in a hallway for 5 seconds as opposed to
reading a book for 20 minutes). Furthermore, there was no
natural segmentation of video components into individual
sequences and transitions between clips of one activity ver-
sus another activity were often defined by extremely blurry
frames in between. These frames could not be labeled and
we needed a quantifiable means by which we could filter out
bad frames. Instead of toying with regularization parame-
ters and the objective function of the neural net gradient
descent algorithm, we chose a more intuitive, cleaner, and
compute-friendly method of preprocessing the data before
feeding into the neural net, as outlined below.

3.2.1 Step 1: Detecting Anomalous Frames

To quickly filter out bad frames, we used a hybrid technique
of performing maximum-margin separation for anomalous
frames, after decomposing the raw pixel values into low-
pass and band-pass filtered coefficients in the wavelet do-
main using the “discrete wavelet transform.” This technique
was performed on video segments of about 30 seconds long.

The discrete wavelet transform can be used to transform
any signal into a reduced set of coefficients in which we
capture information in both spatial and frequency domains
by correlating it with a local-support “wavelet” function di-
lated across several scales [5]. This is actually a key pro-

2



Figure 2. Raw frames captured during data collection

Figure 3. Manually labeled test frames

cessing step used in the widely popular JPEG2000 format
[3]. We used the canonical “Fast Wavelet Transform,” an
O(n) algorithm to correlate a signal with a representative
wavelet function which captures the polynomial nature of
the signal.1 This works with images as well, but specifi-
cally requires a bi-orthogonal wavelet to capture correlation
in two dimensions. We used the popular PyWavelets library
[4] to perform the wavelet decomposition.

The wavelet coefficients were very important in deter-
mining bad frames since blurry images have more promi-
nent low-frequency components (cf. low-pass Gaussian fil-
tering used to blur images) while good frames were more
evenly distributed in their frequency components. There-
fore, after performing the wavelet decomposition, we used
the lowest and highest frequency coefficients as feature vec-

1I leave out details about the wavelet math and implementation of algo-
rithms in this report since they comprise a whole field in and of themselves,
and are outside the scope of our project

tors for our maximum-margin separator.
A one-class SVM was used since our primary goal was

not binary classification, but rather detection of a small
subset of bad frames. With feature vectors that best cap-
tured the disparity between good and bad frames, we were
able to consistently and accurately prune out bad frames
using an RBF kernel to create a hyper-sphere around the
good frames and eliminate all images which fell beyond the
boundaries of the hyper-sphere. Python’s scikit-learn
library helped us develop this end-to-end filtering method
within only a few dozen lines of code [6]. All in all, this
preprocessing step proved to be remarkably efficient and ac-
curately reduced our dataset to the best representative set of
frames for our CNN.

3.2.2 Step 2: K-Medoids Filtering

In addition to the dataset reduction above, we experimented
with K-medoids clustering on larger segments of the video

3



Parameter Value
Momentum 0.9
Max iterations 50,000
γ-value 0.1
Test iteration intervals 1,000

Table 1. Parameters used while training AlexNet

(5-10 minutes) to see if we could categorize the frames into
K specific activities and take only the best representative
frames (the “medoids”) from each cluster. The goal of this
technique was to reduce the number of identical frames (see
similar images in Fig. 2)—however the technique was a lit-
tle too effective for our needs. It would have been more
impactful given large amounts of diverse video footage,
whereas in our case, we were faced with a dearth of di-
verse footage. As such, our algorithm picked several frames
from the edge of each cluster instead of the medoid alone,
to compensate for this lack of data.

3.3. CNN Training and Validation

We chose the AlexNet architecture for our CNN after
careful analysis of several alternatives (including MatCon-
vNet and VGG). As delineated in [2], AlexNet is an opti-
mized deep network for recognizing objects, which is the
single-most important heuristic we can use for classify-
ing activities such as reading and exercising. Furthermore,
AlexNet was designed for GPU optimization (similar to our
environment), ripe with fast ReLU and normalization units
for better classification performance. A copy of AlexNet’s
diagram in [2] is provided in Fig. 3 for reference—we trans-
lated this design to a prototxt file to run in our envi-
ronment with Pycaffe. The parameters of the network are
outlined in Table 1.

Between iterations of modifying our preprocessing al-
gorithm and our CNN parameters, we trained on the 60%
of training data and ascertained a degree of generalizability
with our validation set. We used our testing set only when
we recorded new footage to augment our data set with fresh
footage.

4. Experimental Results and Analysis
The CNN achieved 99% accuracy on the reading clas-

sification task with the first round of testing—however, this
should be qualified with the fact that we are training on sim-
ilar bits of video footage due to a lack of diversity in our
data set. Although our testing set is significantly different
in some ways to our training set, we still have overlapping
frames and this gave the network an advantage in classify-
ing frames which were part of the same video sequence.

To mitigate this problem, we performed a second round
of testing with newly recorded test videos while keeping

Activity Error Rate
Reading 1.79%
Neither 5.42%
Exercising 85.7%

Table 2. Results of classification on test data

our training set stagnant. The results for these additional
tests are recorded in Table 2. The CNN still performed
well while classifying the “reading” and “neither” cate-
gories since there was quite a bit of diversity in the footage
used in the training set. However, the error rate for exercis-
ing was shockingly high at 1271 out of 1400 frames mis-
classified. The high error rate is most likely due to the lack
of diversity in the training set for exercising, where we only
had a few gyms and not many unique angles to choose from.
The network, therefore, suffered from inability to general-
ize for exercising in different physical locations (e.g. the
Z-Center versus the BC gym), and we weren’t able to ex-
tract the features to most accurately classify “exercise” in
these gyms. However, the easiest fix for this would be to
record more diverse footage for exercise, capturing differ-
ent physical activities and a wider variety of gyms outside
of MIT.

5. Conclusions

Overall, our results were higher than expected in some
cases, and lower in others, but generally aligned well with
our hypotheses going into the experiment. We found the
the accuracy of network classification for activities, which
largely depends on object recognition, works best with di-
versity in our training set. Reading was easily diversified
by capturing different media, different angles and differ-
ent content type, so that the underlying nature of “textual”
content was extracted quite well by the CNN (leading to
remarkably low error rates). However, the case for exer-
cise was not as glamorous since the training set was very
much homogenous—too homogenous to achieve correct re-
sults even with our pipeline of preprocessing and the use of
AlexNet.

We’ve highlighted some of the key challenges in video
classification in this study, successfully addressing some of
them and emphasizing the difficulty in others. Highly corre-
lated video data leads to a bloated training set which doesn’t
provide for as rich context as image databases such as Im-
ageNet. Furthermore, video processing is crucial in allay-
ing difficulties in training an image-centric CNN to perform
the more complex task of video classification. At the same
time, the results attained demonstrate the true potential in
CNNs as a means for advanced tasks such as life-logging.
Furthermore, having achieved the high throughput that we
did in the end-to-end classification pipeline, we see the po-

4



Figure 4. AlexNet architecture [2] as replicated for our CNN model of choice

tential to integrate this system into an ad-hoc environment
where users can upload short bits of video from lightweight
technologies such as Google Glass and track their activities
on-the-go.

References
[1] S. Hodges, E. Berry, K. Wood SenseCam: A wearable camera

which stimulates and rehabilitates autobiographical memory
Memory, 2011.

[2] A. Krizhevsky. I. Sutskever, G. E. Hinton ImageNet classifi-
cation with deep convolutional neural networks Advances in
Neural Information Processing Systems, 2012.

[3] M. Marcellin. M. Gormish, A. Bilgin, M. Boliek An Overview
of JPEG-2000 IEEE Data Compression Conference, 2000.

[4] F. Wasilewski PyWavelets: Analysis and Classification of
Medical Signals using Wavelet Transforms Warsaw School,
2006.

[5] P. Schroder, W. Sweldens Build Your Own Wavelets At Home
SIGGRAPH, 1996.

[6] Scipy One-class SVM with non-linear kernel (RBF), 2010.
[7] L. Li, H. Su, Y. Lim, L. Fei-Fei Objects as attributes for

scene classification European Conference for Computer Vi-
sion, 2010.

[8] L. Li, L. Fei-Fei What, where and who? Classifying events
by scene and object recognition International Conference for
Computer Vision, 2007.

[9] J. Y. Ng, M. Hausknecht, S. Viyanarasimhan, O. Vinyals, R.
Monga, G. Toderici Beyond Short Snippets: Deep Networks
for Video Classification 2015.

[10] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,
L. Fei-Fei Large-scale video classification with convolutional
neural networks Computer Vision Proceedings Report, 2014.

5


