Shraman Ray Chaudhuri

Email: shraman [at] mit [dot] edu Personal Website: shraman-rc.github.io RESEARCH Computer Vision (scene understanding, 3D reconstruction, intuitive physics), INTERESTS Bayesian Machine Learning (nonparametrics, distributed inference, interpretability) EDUCATION Massachusetts Institute of Technology, Cambridge, MA 09/2017 - 06/2018 Master of Engineering (M.Eng.), Electrical Engineering and Computer Science • Relevant Coursework: o Computer Vision (6.869) o Bayesian Inference (6.882) o Advanced Algorithms (6.854) o Numerical Methods for PDEs (6.339) o Performance Engineering (6.172) Bachelor of Science (S.B.), Computer Science and Engineering 09/2013 - 06/2017 Minor in Mathematics RESEARCH Massachusetts Institute of Technology, Cambridge, MA 06/2017 - PresentEXPERIENCE Graduate Research Assistant under Prof. Josh Tenenbaum Supervised by Dr. Ilker Yildirim • Exploring probabilistic generative models, deep learning, and Bayesian optimization to infer pose and 3D representation of objects from a single RGB image. Developed a sampling-based training algorithm to optimize neural networks via physical simulation. Developed various research tools for the lab including a Python/C++ library for physics simulation with FleX and Bullet, a framework for ConvNet feature analysis, and a distributed mesh rendering pipeline. Massachusetts Institute of Technology, Cambridge, MA 08/2016 - 06/2017Undergraduate Research Assistant under Prof. Nir Shavit Supervised by Dr. Alexander Matveev Explored deep learning methods to construct a connectivity map of the brain from cross-sectional EM images of brain tissue. Designed and implemented a multi-resolution ConvNet model based on U-Net, ResNet, and PixelCNN for membrane segmentation. Achieved state-ofthe art performance on various EM datasets. Designed and implemented parallel algorithms for a 2D/3D deep learning library on multicore CPUs. **INDUSTRY** D.E. Shaw Research, New York, NY 05/2016 - 08/2016EXPERIENCE Scientific Associate (SA) Intern, Software & Applied Math Group Supervised by Dr. Charles Rendleman • Designed, implemented, and optimized a particle-mesh Poisson solver to efficiently compute Hamiltonian energies in molecular dynamics simulations. Developed fast numerical integration and nonlinear optimization algorithms to increase simulation efficiency. SpaceX, Hawthorne, CA 05/2015 - 08/2015Software Engineering Intern, Propulsion Research Team Developed an automated anomaly detection algorithm for rocket telemetry using multiresolution analysis (wavelet transforms), one-class SVMs, hierarchical clustering, and various feature extraction methods. • Developed an adaptive wavelet-based algorithm to compress telemetry signals by several orders of magnitude.

PUBLICATIONS

D. Budden, A. Matveev, S. Santurkar, S. Ray Chaudhuri, N. Shavit. "Deep Tensor Convolution on Multicores." Proceedings of the 34th International Conference on Machine Learning (ICML), Sydney, Australia. (2017)

S. Ray Chaudhuri, A. Matveev, N. Shavit. "High-Performance ConvNets for Iterative Membrane Segmentation." MIT EECScon. (2017)

TEACHING

Design & Analysis of Algorithms (6.046)

Head Teaching Assistant Teaching Assistant Fall 2017, Spring 2018 Fall 2016, Spring 2017

- Teach recitation sections of 30-35 students; topics include Dynamic Programming, Max Flow, Linear Programs, [Randomized, Sublinear, Distributed] Algorithms, Convex Optimization, Complexity Theory, etc.
- Prepare homework/exam problems, organize review sessions, and handle various course logistics for over 300 students.
- Average Overall Rating (from course evaluations): 6.8/7.0

Intro to Deep Learning (6.S191)

Teaching Assistant

Winter 2018

• Design and run labs for a weeklong course on deep learning during MIT's Independent Activities Period (IAP). Topics include CNNs, GANs, LSTMs, and Deep RL.

HONORS

 $1^{\rm st}$ Place (out of 70+ submissions) at MIT EECScon 2017 MIT EECS Undergraduate Research and Innovation Scholar IEEE Eta Kappa Nu (HKN) Honor Society

SKILLS

Programming Languages: C, C++, Python, Java, Lua, MATLAB Research Tools: TensorFlow, Torch, Caffe, OpenCV, OpenGL, Bullet, FleX Misc. Tools: CUDA, Cilk, ROS, gcc, Git, Linux/Bash