
Auto-encoding Variational Bayes with Extensions

Shraman Ray Chaudhuri
Department of EECS, MIT

Cambridge, MA 02139
shraman@mit.edu

Abstract

We investigate in full detail the Auto-encoding Variational Bayes paradigm orig-
inally proposed by Kingma et. al. and scrutinize both its limitations and effec-
tiveness. We also propose and implement vectors for improvement, detailing both
theoretical advantages and empirical results, including Amari’s natural gradient
extension to stochastic optimization and variational Gaussian dropout. Finally,
we provide a ground-up implementation of an efficient and modifiable Variational
Auto-Encoder that summarizes our findings.

1 Introduction

Recent trends in high-performance neural computation frameworks have shown that a Bayesian
interpretation of neural net regression [14] can open doors to a wide variety of applications [8]. One
interesting use of neural computation is performing variational inference for intractable posteriors
while simultaneously performing maximum a posteriori (MAP) estimates over the parameters of the
true posterior. The realization of these algorithms often includes an analogy to encoders (for the
variational approximation) and decoders (for the MAP estimate).

Variational inference has proven to be highly scalable [5], adaptable [9], and intuitive [2] as an
optimization problem. Therefore, it isn’t too surprising that a coveted goal is to eliminate as many
restrictions on the approximating model (e.g. conjugacy) while still being able to perform efficient,
accurate VI. The auto-encoding variational Bayes (AEVB) framework partially accomplishes these
goals.

The rest of this paper is organized as follows: Section 2 roughly outlines the AEVB framework,
Sections 3 & 4 discuss key optimizations explored, Section 5 details the ground-up implementation of
the project, Section 6 describes a few replicable experiments to assess the performance of the AEVB
model, and the Appendices include all original figures and derivations (to economize on space).

2 Variational Autoencoding Framework [1]

The notation used throughout this paper is as follows: x represents observed data, z are latent
variables, θ are hyperparameters of true distributions p, and φ are variational parameters of the
approximating distribution q. To briefly review the problem of variational inference, we aim to
maximize the lower bound on the log marginal likelihood log pθ(z):

log pθ(x) ≥ L(θ, φ;x)

= Eqφ[pθ(x, z)] + Eqφ[qφ(z)]

To maximize the right-hand side, we need to compute the gradient∇φEqφ[pθ(x, z)]+∇φEqφ[qφ(z)],
for which it is often difficult to derive a closed-form. We could indeed limit our approximating

6.882, Bayesian Inference and Modelling (Prof. Tamara Broderick), MIT.

distribution q to certain conjugate families, but AEVB attempts to eliminate that restriction to allow
for a richer set of approximate models.

The other option for computing gradients on these expectations is Monte-Carlo Estimation
(MCE). The straightforward Monte-Carlo estimator for gradients by applying the chain-rule is
∇φEqφ[f(z)] ≈ 1

L

∑L
i=1 f(z)∇q logqφ(z(i)), which exhibits high variance. Although this doesn’t

lead to any theoretical disadvantages, the advent of large datasets require gradient-descent mecha-
nisms to work with minibatches (i.e. stochastic gradient descent) which perform very poorly when
the gradient estimator exhibits high variance 1

A straightforward solution is to reparameterize z so that our Monte-Carlo sampler does not need to
succumb to high variance. For example, if our approximating distribution is Gaussian with diagonal
covariance, i.e. qφ(z) = N (µ, σ2), we can reparameterize z by introducing an auxiliary variable ε
such that z = µ + σ · ε, and ε ∼ N (0, I). The advantage brought by this simple trick is two-fold:
we are outsourcing the uncertainty on z to an auxiliary variable (not dependent on φ) so we can
compute the gradient of an expectation rather than an rely on MCE of individual gradients, and more
importantly, we’ve greatly reduced the variance of our MCE by sampling ε instead of z.

The final estimator derived in [1] (through straightforward algebraic manipulation) is:
−KL(qφ(z)||pθ(z)) + 1

L

∑L
i=1 log pθ(x|z(i)) where z is parameterized as above. 2 This is the

objective function we feed into our encoder-decoder pair of networks to maximize via stochastic
gradient descent (SGD). The authors of [1] highlight a key intution for this form of the ELBO in
particular—the first term prevents diverging too far from the prior on z (preventing overfitting as a
regularizer) and the second term is a reconstruction error that drives both variational inference in the
encoder and maximum likelihood in the decoder.

The physical representation of the AEVB framework and intuitions thereof are in Appendix C.

3 Optimization I: Natural Gradient

A key lemma in regular convex optimization is that the gradient points in the direction of steepest
ascent of the objective function, with respect to the parameters we optimize, and almost all flavors of
SGD make this assumption. Although generally valid for most regression models, this assumption
breaks down once we consider relative entropy as a metric for local “distance." Amari showed a few
applications where exploiting the contour of the relative entropy function space could lead to faster
learning, since we can derive gradients that actually point in the direction of steepest ascent. This led
to a secondary goal of this project: to incorporate natural gradients in a novel setting—the AEVB
framework—which is unprecedented for this special class of algorithms (as far as I know). This
section adapts the insights from [6] and [7] particularly for AEVB.

3.1 The Natural Gradient for AEVB

Recall that Lagrange Multipliers can be used to optimize a function over contours in the input space
produced by simple equality constraints (a constructive review of Lagrange Multipliers is provided in
Appendix A). Let’s adapt this technique to the problem of finding an optimal direction ∆θ to descend
in our relative entropy manifold. 3 Formally, we are trying to determine arg min∆θ f(θ + ∆θ)
s.t. KL(pθ||pθ+∆θ) = c where f is any arbitrary loss function w.r.t. θ (which parameterizes a
probability distribution). The constraint can be intepreted as making progress at a constant rate c in
the KL-divergence manifold while moving through the parameter space.

We make a few Taylor approximations of our two functions f(θ + ∆θ) and KL(pθ||pθ+∆θ). For
the former, we use a first-order approximation f(θ) +∇f(θ)∆θ. For the latter, we use a second-
order approximation KL(pθ||pθ+θ) + ∇KL(pθ||pθ)∆θ + 1

2∆θT∇2KL(pθ||pθ)∆θ, where it is
straightforward to check that the first two terms are (individually) zero [7]. Our approximation of the
KL-divergence is then − 1

2∆θTE[∇2 log pΘ(z)]∆θ
def
= 1

2∆θTF∆θ, where F is also known as the
Fisher matrix (i.e. the Hessian of the KL divergence).

1We now have two sources of variance—one from randomly sampling the minibatches and another for the
Monte-Carlo estimate of the gradients.

2This new KL-divergence term is with respect to the prior pθ(z), not the posterior
3In particular, a Riemannian manifold that behaves locally Euclidean

2

The form for our optimization problem directly calls for Lagrange multipliers. The Lagrangian of our
problem is L(∆θ, λ) = f(θ) +∇f(θ + ∆θ) + λ 1

2∆θTF∆θ, and solving with respect to ∆θ (see
Appendix B for derivations), we have ∆θ∗ = − 1

λ∗F
−1∇f(θ). 4 Therefore, the optimal direction

(natural gradient) is simply ∇Nf(θ) = F−1∇f(θ). By pre-multiplying our computed gradients in
the AEVB framework by the inverse Fisher matrix, we can potentially converge to a better ELBO
estimate. Computation of the Fisher matrix for various activations and neural network units are
provided in [7], which were used religiously to implement a working prototype.

3.2 Implementation Challenges

A considerable caveat is that the above derivations based on Taylor approximations are accurate only
as ∆θ → 0, so one immediate challenge is ascertaining fast convergence while placing a limit on our
step size ∆θ (too high, and the natural gradient would diverge since our approximations fall apart).

A key challenge was simply computing the Fisher information matrix F. In general, computing
Hessians via naive pairwise operations lead to quadratic runtime O(N2) where N is the dimension-
ality of our parameter space. Contrast this with the relatively straightforward computation of the
gradient in O(N). It is difficult to interface such a computation with existing high-performance
implementations of gradient descent (let alone parallelize it) and this comes with good reason since
the Fisher information matrix is often used as a standalone device rather than an augmentation to
stochastic gradient descent. Therefore, recursive methods such as those presented in [11] are too
slow, and the implementation in Section 5 opts for a cruder first-order approximation.

The final challenge is maintaining this Fisher information matrix across training iterations so that the
Hessian information doesn’t need to be recomputed at every timestep. A lot of quasi-Newton gradient
descent techniques and implementations thereof are able to update an approximate Hessian so that
only a fraction of the cells need to be recomputed. This is, however, outside the scope of this project.

4 Optimization II: Dropout and Reparameterization

A followup paper [4] was written by the original authors of [1] introducing yet another reparameter-
ization trick that decreases the minibatch variance with respect to the auxiliary random variable ε
while keeping the space complexity as low as possible. The problem with the estimator in Section 2 is
that its variance does not decrease inverse-linearly with the size of the minibatch M . To eliminate the
covariance between estimators, we would requireM different weight matrices to produceM different
Monte-Carlo estimates of z, one for each datapoint. However, this would lead to an enormous
blow-up in memory, even with efficient computation graphs (see Section 5).

Fortunately, [4] provides an ingenious solution where we can reparameterize so that we instead of
sampling the weights, we add an auxiliary noise variable to each of the outputs of the encoder network.
As in Section 2, the distribution from which this auxiliary noise variable is sampled from can simply
be ηm,j ∼ N (0, I) where m represents the index in the minibatch and j a specific coordinate of z.

On top of this, we can leverage the “dropout" technique introduced recently as free-lunch for
regularization in neural networks (e.g. as in [3]). The concept of dropout is partially turning off the
activations for some nodes by multiplying each weight by a coefficient sampled from N (0, I). It
turns out that the above reparameterization trick is essentially performing this dropout technique
under the hood—where the ηm,j values at the output produce the same effect on qφ(z) as if we were
sampling from their marginal.

Ironically, implementing this dropout technique was extremely straightforward (adding a few nodes
to the vanilla AEVB’s computation graph) and led to better improvements than the natural gradient
modification above (see Section 6/Appendix D).

5 Implementation

You can find the full GitHub repository at this URL:
4λ∗ is the optimal λ that satisfies ∇λL(θ, λ) = 0; however, recall that we were simply looking for the

direction of the optimum and so the scalar − 1
λ∗ is superfluous since we must tune the step-size separately to

achieve practical convergence rates.

3

https://github.com/shraman-rc/VINNy

The repository has been refactored many times to be highly self-contained, easily modifiable, and
equipped with a suite of qualitative and quantitative tests. An updated README is coming soon, but
check out vae.py and tests.py for the vanilla Variational Autoencoder framework and test suites
respectively. Basic installation of packages with pip install should suffice in running the code.

The entire repository is implemented using highly performant scientific Python, facilitated via libraries
like TensorFlow [12] and NumPy. The main computation workhorse comes from the computation
graph interface provided by TensorFlow to easily construct inter-variable relationships and objective
functions (which can indeed incorporate randomness—e.g. for sampling the auxiliary random variable
ε). Some TF-related optimizations incorporated include manually controlling gradient magnitudes
(to prevent exploding near the first stages of training, while also counteracting early annealing of
the weights), pruning expensive operations (such as sqrt ops and log/exp’s) and/or computing
them ad-hoc, and using built-in differentiation operators to perform the Fisher matrix computation as
explained in Section 3.

Although TensorFlow is quite powerful, there were several roadblocks and non-trivial debug situations
that were difficult to overcome given that it is still a nascent library. The foremost problem was that
the original paper [1] outlined a model for the VAE that was highly underspecified. The activation
and optimization engines were surprisingly outdated and led to performance issues with the neural
network architecture they proposed. Some examples of incompatibilities included the depth of the
MLP (multi-layer perceptron), the acceptable learning rate given batch size and complexity of the
computation graph, and exploding gradients using state-of-the-art optimizers (e.g ADAM). These
were very implementation-specific and therefore hard to diagnose.

Other less obvious problems included the family of approximating distributions to use for the
variational inference (for my particular case, I had to use a Gaussian variational distribution qφ(z)
but a Bernoulli likelihood distribution pθ(x|z) to model images). Finally, overfitting was a large
issue which was partially ameliorated by scaling up the coefficient for the KL-divergence term (with
respect to the prior—not the posterior) so that the variational approximation wouldn’t diverge too far
from pθ(z).

6 Experiments

The initial tests measured the reconstruction quality (while varying the dimensionality of the latent
space z) via predictive likelihood on a held-out test set of approximately 5000 images. It turns out
that the predictive likelihood measure did not change significantly after a 10-dimensional latent space,
which makes sense since there are only 10 digits. See Appendix D for visualization of a 2D latent
space as well as visual assessment of reconstruction performance.

After the main optimizations outlined in Sections 3 and 4, there were slight improvements to the
convergence time as well as the evidence lower bound calculation. The natural gradient method was
not as effective as Variational Dropout and simple reparameterization techniques, and keeping track
of the Fisher information matrix turned out to be very computationally disadvantageous (close to 70x
decrease in runtime). As stated, informative plots can be found in Appendix D.

7 Conclusion

It was incredibly rewarding to build an end-to-end implementation of AEVB and progressively see
the optimizations come to life. To summarize some key takeaways: (1) be wary of “black-box"
methods especially those which incorporate samplers as high variance is often tricky to avoid, (2)
statistical optimizations (e.g. the natural gradient) may be outperformed by numerical ones (e.g.
ADAM) which may in-turn be outperformed by other statistical ones (e.g. Variational Dropout), and
(3) hybrid perspectives, such as Bayesian approach to neural net regression, can often lead to some of
the most simple, elegant solutions (e.g. reparameterization).

4

https://github.com/shraman-rc/VINNy

References

[1] Kingma, D.P. & Welling, M. (2014) Auto-encoding Variational Bayes. Advances in Neural
Information Processing Systems.

[2] Blei, D. (2011) Variational Inference (Lecture Notes). Princeton CoS597C.

[3] Ioffe, S. & Szegedy C. (2015) Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift. Journal of Machine Learning Research.

[4] Kingma, D.P. & Salimans, T. & Welling, M. (2015) Variational Dropout and the Local Reparam-
eterization Trick. Advances in Neural Information Processing Systems.

[5] Broderick, T. & Boyd, N. & Wibisono, A. & Wilson, A. C. & Jordan, M. (2013) Streaming
Variational Bayes. Advances in Neural Information Processing Systems.

[6] Hoffman, M. & Blei, D. & Wang, C. & Paisley, J. (2013) Stochastic Variational Inference.
Journal of Machine Learning Research.

[7] Pascanu, R. & Bengio, Y. (2014) Revisiting the Natural Gradient for Deep Networks International
Conference on Learning Representations.

[8] Gregor, K. & Danihelka, I. & Graves, A. & Rezende, D. J. & Wierstra, D. (2015) DRAW: A
Recurrent Neural Network for Image Generation International Conference on Machine Learning.

[9] Salimans, T. & Kingma, D.P. & Welling, M. (2015) MCMC and Variational Inference: Bridging
the Gap Journal of Machine Learning Research.

[10] Blei, D. & Ng, A. & Jordan, M. (2002) Latent Dirichlet Allocation Advances in Neural
Information Processing Systems.

[11] Cavanaugh, J. E. & Shumway, R. H. (2011) On Computing the Expected Fisher Information
Matrix for State-Space Model Parameters Elsevier Letters in Statistics and Probability.

[12] Monga, R. & Vinyals, O. & Dean, J. & et. al. (2015) TensorFlow: Large-Scale Machine
Learning on Heterogeneous Distributed Systems Google Research.

[13] LeCun, Y. & Cortes, C. & Burges, C. J. C. (1998) The MNIST Database of Handwritten Digits.
NYU, Google Labs, Microsoft Research

[14] Bishop, C. (2006) Pattern Recognition and Machine Learning, Chapter 3.3-3.5, 4.2-4.6 Advanced
Computing Machinery, Springer Information & Statistics Series

5

Appendix A: Lagrange Multipliers

Say we want to minimize a function f(x) with simple constraint h(x) = c (which can be rewritten
as g(x) = h(x)− c = 0). We fold the constraint into the optimization function itself by making an
extra observation—if f(x) is to be optimized over the contour g(x) = 0 then the optimum must lie at
a point where the contours are parallel—and since the gradients are orthogononal to the contour lines,
the gradients must also be parallel (or antiparallel). We then have that∇xf(x) = λ∇xg(x) (where λ
can indeed be negative). If we define a loss function L s.t. ∇xL(x) = ∇xf(x) + λ∇xg(x), then by
optimizing L, we achieve our parallel constraint∇xf(x) = −λ∇xg(x) as desired.

To incorporate the final constraint g(x) = 0, we can optimize the same function L(λ) = f(x)+λg(x)
with respect to λ so that∇λL(λ) = 0 gives us our desired g(x) = 0 condition. Then, by finding the
optimum of L(x, λ) = f(x) + λg(x), we have a necessary (but not sufficient) constraint to solving
our original constrained optimization problem.

Appendix B: Solving Lagrangian in Section 3

∇∆θL(∆θ, λ) = ∇∆θf(θ) +∇∆θ(∇f(θ)∆θ) +∇∆θ(λ
1

2
∆θTF∆θ)

= ∇L(θ) + λF∆θ

= 0

=⇒ ∆θ∗ = − 1

λ∗
F−1∇f(θ)

Appendix C: Figures for Section 2

Figure 1: The “coding" model under consideration. We have 1 latent per data point, where the latent
distribution is parameterized by hyperparameters θ. This model, however simplistic, definitely appear
frequently in the real world (e.g. performing MAP estimates on latent variable z—which can be
interpreted as a “code"—is equivalent to find a probabilistic compression/decompression scheme for
data x)

6

Figure 2: The architectures for the encoder and decoder. The hidden layers were composed of
multi-layer perceptrons (implemented with full matrix multiplication with weight matrices and ReLU
activation). In the case of a Gaussian variational approximation, φ would be µ, σ. Note that φ
implicitly contains the parameters for the encoder (weights, biases) and θ for the decoder. Finally, the
z that is pushed through the decoder is computed via sampling ε ∼ p(ε) and plugging into µ+ σ · ε

7

Appendix D: Figures for Section 6

Figure 3: Assessment of Variational Auto-encoder Performance. The left column shows the original
MNIST images, the middle column shows the pdf’s of each (Gaussian) approximation qφ(z|x(i))
parameterized by the φ = (µ, log σ2) outputs of the encoder, and the right column shows a sample
from the likelihood distribution pθ(x|z) which is parameterized by the output of the decoder. I only
chose a latent space of dimension 2 for easy visualization, but I will soon integrate PCA for higher
dimensional latent spaces in the GitHub repo.

8

Figure 4: Assessment of Optimization Performance. The three different plots, top to bottom, represent
the ELBO estimate (cost function), the KL-divergence with respect to the prior (regularization term),
and the predictive likelihood (negative reconstruction error). All 3 runs were performed with the
same set of optimal parameters shown in the beige box. The red line shows the performance of
the first working prototype of AEVB. The green line shows performance after applying the inverse
Fisher matrix to the gradients. The blue line represents Variational Dropout—i.e. applying Gaussian
coefficients to encoder activations. We can clearly see a performance increase in both convergence
rate and final ELBO estimate when applying the dropout technique, but there is not much difference
when using the natural gradient.

Appendix E: Work in Progress

Although the original goals of this project were met earlier than expected (to correctly implement and
debug a Variational Autoencoder framework, and assess its performance on a real-world dataset),
there are several directions I believe will improve the architecture in some way, shape, or form. Some
improvements and analyses thereof were discussed in sections 3 and 4, and others (works in progress)
are discussed herewith.

7.1 Optimization III: Streaming VB

To expand the implementation to a streaming setting, I turned to [5] since the factorization and i.i.d.
assumptions aligned well with the variational approximations of interest for VAEs. Furthermore, the
second reparameterization trick can counteract minibatch variance so that doing posterior updates
exactly as outlined in [5], except with distributed encoders, would efficient and accurate. I’ve
implemented a meta-framework in Go (a distributed systems language) to test this optimization
and the codebase has been noticeably refactored to support logical connections between Variational
Autoencoders in the TensorFlow computation graph and the Go meta-framework. The Go branch has
been omitted from the repo.

9

	Introduction
	Variational Autoencoding Framework [1]
	Optimization I: Natural Gradient
	The Natural Gradient for AEVB
	Implementation Challenges

	Optimization II: Dropout and Reparameterization
	Implementation
	Experiments
	Conclusion
	Optimization III: Streaming VB

